dr. Z. Yu
Electronic Instrumentation (EI), Department of Microelectronics
PhD thesis (Apr 2012): Low-Power Receive-Electronics for a Miniature 3D Ultrasound Probe
Promotor: Michiel Pertijs, Gerard Meijer
Publications
Pan, Sining; An, Xiaomeng; Yu, Zheru; Jiang, Hui; Makinwa, Kofi A. A.;
IEEE Journal of Solid-State Circuits,
pp. 1-9, 2023. DOI: 10.1109/JSSC.2023.3322307
Jang, Moonhyung; Hays, Maddy; Yu, Wei-Han; Lee, Changuk; Caragiulo, Pietro; Ramkaj, Athanasios T.; Wang, Pingyu; Phillips, A. J.; Vitale, Nicholas; Tandon, Pulkit; Yan, Pumiao; Mak, Pui-In; Chae, Youngcheol; Chichilnisky, E. J.; Murmann, Boris; Muratore, Dante G.;
IEEE Journal of Solid-State Circuits,
December 2023. DOI: 10.1109/JSSC.2023.3344798
MoonHyung Jang; Wei-Han Yu; Changuk Lee; Maddy Hays; Pingyu Wang; Nick Vitale; Pulkit Tandon; Pumiao Yan; Pui-In Mak; Youngcheol Chae; EJ Chichilnisky; Boris Murmann; Dante G Muratore;
In IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits),
2023. DOI: 10.23919/VLSITechnologyandCir57934.2023.10185288
Yu, Zhibin; Abdelkader, Ahmed; Wu, Xiaofeng; Lamoral Coines, Adrián; Haardt, Martin;
In 2023 IEEE 9th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP),
pp. 321-325, 12 2023. DOI: 10.1109/CAMSAP58249.2023.10403481
Yuan, Sen; Yu, Ze; Li, Chunsheng; Wang, Shusen;
IEEE Geoscience and Remote Sensing Letters,
Volume 18, Issue 1, pp. 132-136, 2021. DOI: 10.1109/LGRS.2020.2968336
Wang, Jianing; Liu, Xiaohui; Peng, Qiang; Xun, Yuanwu; Yu, Shaolin; Jiang, Nan; Wang, Wenbo; Hou, Fengze;
IEEE Journal of Emerging and Selected Topics in Power Electronics,
Volume 9, Issue 1, pp. 1088-1103, 2021. DOI: 10.1109/JESTPE.2020.3043018
Hongyu Tang; Chenshan Gao; Huiru Yang; Leandro Nicolas Sacco; Robert Sokolovskij; Hongze Zheng; Huaiyu Ye; Sten Vollebregt; Hongyu Yu; Xuejun Fan; Guoqi Zhang;
2D Materials,
2021. DOI: 10.1088/2053-1583/ac13c1
Fengze Hou; W. Wang; R. Ma; Y. Li; Z. Han; M. Su; J. Li; Z. Yu; Y. Song; Q. Wang; M. Chen; L. Cao; GuoQi Zhang; J.A. Ferreira;
IEEE Journal of Emerging and Selected Topics in Power Electronics,
Volume 8, Issue 1, pp. 367-380, 2020.
Robert Sokolovskij; Jian Zhang; Hongze Zheng; Wenmao Li; Yang Jiang; Gaiying Yang; Hongyu Yu; Pasqualina M. Sarro; Guoqi Zhang;
IEEE Sensors,
Volume 20, Issue 16, pp. 8947-8955, 2020.
document
Cai, M.; Liang, Y.; Yun, M.; Chen, X-Y.; Yan, H.; Yu, Z.; Yang, D.; GuoQi Zhang;
IEEE Access,
2019. DOI: 10.1109/ACCESS.2019.2900361
Wu, J.; Lei, S.; Cheng, W-C.; Sokolovskij, R.; Wang, Q.; Xia, G. M.; Yu, H.;
Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films,
2019. DOI: 10.1116/1.5115427
Jian Zhang; Robert Sokolovskij; Ganhui Chen; Yumeng Zhu; Yongle Qi; Xinpeng Lin; Wenmao Li; GuoQi Zhang; Yu-Long Jiang; Hongyu Yu;
Sensors and Actuators, B: Chemical,
Volume 280, pp. 138-143, 2019. DOI: 10.1016/j.snb.2018.10.052
Hongyu Tang; Yutao Li; Robert Sokolovskij; Leandro Sacco; Hongze Zheng; Huaiyu Ye; Hongyu Yu; Xuejun Fan; He Tian; Tian-Ling Ren; GuoQi Zhang;
ACS Applied Materials and Interfaces,
pp. 40850-40859, 2019. DOI: 10.1021/acsami.9b13773
Yuan, Sen; Li, Chunsheng; Yu, Ze; Geng, Jiwen; Yu, Jindong;
In IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium,
pp. 8633-8636, 2019. DOI: 10.1109/IGARSS.2019.8898730
Jiajie Fan; Jianwu Cao; Chaohua Yu; Cheng Qian; Xuejun Fan; GuoQi Zhang;
Microelectronics Reliability,
Volume 84, pp. 140-148, 2018.
Sokolovskij, R.; Zhang, J.; Iervolino, E.; Zhao, C.; Santagata, F.; Wang, F.; Yu, H.; Sarro, P. M.; GuoQi Zhang;
Sensors and Actuators B: Chemical,
2018. DOI: 10.1016/j.snb.2018.08.015
Wangyang Yu; N.D. Gaubitch; R. Heusdens;
In 2018 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP),
Calgary (Canada), IEEE, pp. 6887-6891, April 2018. ISSN: 2379-190X. DOI: 10.1109/ICASSP.2018.8462262
document
Wenmao Li; Jian Zhang; Robert Sokolovskij; Yumeng Zhu; Yongle Qi; Xinpeng Lin; Jingyi Wu; Lingli Jiang; Hongyu Yu;
In 18th International Workshop on Junction Technology,
2018.
C Qian; J Fan; J Fang; C Yu; Y Ren; X Fan; GuoQi Zhang;
Materials,
Volume 10, Issue 10, pp. 1181, 2017.
J Fan; C Yu; C Qian; X Fan; GuoQi Zhang;
Microelectronics Reliability,
Volume 74, pp. 179-185, 2017.
Xie, Lei; Du Nguyen, HA; Yu, Jintao; Kaichouhi, Ali; Taouil, Mottaqiallah; AlFailakawi, Mohammad; Hamdioui, Said;
In VLSI (ISVLSI), 2017 IEEE Computer Society Annual Symposium on,
IEEE, pp. 176--181, 2017.
document
C Yu; J Fan; C Qian; X Fan; GuoQi Zhang;
In Electronic Packaging Technology (ICEPT), 2017 18th International Conference on,
2017.
R Sokolovskij; E Iervolino; C Zhao; F Santagata; F Wang; H Yu; PM Sarro; GuoQi Zhang;
In Proceedings of Eurosensors,
pp. 463, 2017.
C. Chen; S. Raghunathan; Z. Yu; M. Shabanimotlag; Z. Chen; Z. Y. Chang; S. Blaak; C. Prins; J. Ponte; E. Noothout; H. J. Vos; J. G. Bosch; M. D. Verweij; N. de Jong; M. A. P. Pertijs;
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
Volume 63, Issue 1, pp. 47‒59, January 2016. DOI: 10.1109/tuffc.2015.2496580
Abstract: ...
This paper presents the design, fabrication, and experimental evaluation of a prototype lead zirconium titanate (PZT) matrix transducer with an integrated receive ASIC, as a proof of concept for a miniature three-dimensional (3-D) transesophageal echocardiography (TEE) probe. It consists of an array of 9 × 12 piezoelectric elements mounted on the ASIC via an integration scheme that involves direct electrical connections between a bond-pad array on the ASIC and the transducer elements. The ASIC addresses the critical challenge of reducing cable count, and includes front-end amplifiers with adjustable gains and microbeamformer circuits that locally process and combine echo signals received by the elements of each 3 × 3 subarray. Thus, an order-of-magnitude reduction in the number of receive channels is achieved. Dedicated circuit techniques are employed to meet the strict space and power constraints of TEE probes. The ASIC has been fabricated in a standard 0.18-μm CMOS process and consumes only 0.44 mW/channel. The prototype has been acoustically characterized in a water tank. The ASIC allows the array to be presteered across ±37° while achieving an overall dynamic range of 77 dB. Both the measured characteristics of the individual transducer elements and the performance of the ASIC are in good agreement with expectations, demonstrating the effectiveness of the proposed techniques.
S. Raghunathan; C. Chen; M. Shabanimotlagh; Z. Chen; S. Blaak; Z. Yu; C. Prins; M. Pertijs; J. Bosch; N. de Jong; M. Verweij;
In Proc. IEEE International Ultrasonics Symposium (IUS),
October 2015. (abstract).
M. Pertijs; C. Chen; S. Raghunathan; Z. Yu; M. ShabaniMotlagh; Z. Chen; Z. Y. Chang; E. Noothout; S. Blaak; J. Ponte; C. Prins; H. Bosch; M. Verweij; N. de Jong;
In Proc. IEEE International Workshop on Advances in Sensors and Interfaces (IWASI),
IEEE, pp. 235‒238, June 2015. invited paper. DOI: 10.1109/iwasi.2015.7184963
Hongyu Tang; Yu, Y; Jia, M; Leung, SYY; Qian, C; Cadmus Yuan; Zhou, X; GuoQi Zhang;
In Proceedings of the 15th International Conference on Electronic Packaging Technology,
pp. 1198-1201, 2014.
Z. Yu; S. Blaak; Z. Y. Chang; J. Yao; J. G. Bosch; C. Prins; C. T. Lancee; N. de Jong; M. A. P. Pertijs; G. C. M. Meijer;
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
Volume 59, Issue 7, pp. 1500‒1512, July 2012. DOI: 10.1109/tuffc.2012.2350
Abstract: ...
There is a clear clinical need for creating 3-D images of the heart. One promising technique is the use of transesophageal echocardiography (TEE). To enable 3-D TEE, we are developing a miniature ultrasound probe containing a matrix piezoelectric transducer with more than 2000 elements. Because a gastroscopic tube cannot accommodate the cables needed to connect all transducer elements directly to an imaging system, a major challenge is to locally reduce the number of channels, while maintaining a sufficient signal-to-noise ratio. This can be achieved by using front-end receiver electronics bonded to the transducers to provide appropriate signal conditioning in the tip of the probe. This paper presents the design of such electronics, realizing time-gain compensation (TGC) and micro-beamforming using simple, low-power circuits. Prototypes of TGC amplifiers and micro-beamforming cells have been fabricated in 0.35-μm CMOS technology. These prototype chips have been combined on a printed circuit board (PCB) to form an ultrasound-receiver system capable of reading and combining the signals of three transducer elements. Experimental results show that this design is a suitable candidate for 3-D TEE.
Z. Yu; S. Blaak; C. Prins; Z. Y. Chang; C. T. Lancée; J. G. Bosch; N. de Jong; G. C. M. Meijer; M. A. P. Pertijs;
In Proc. IEEE International Ultrasonics Symposium (IUS),
IEEE, pp. 2063‒2066, October 2012. DOI: 10.1109/ultsym.2012.0516
Abstract: ...
This paper presents a 9-channel low-power receiver ASIC dedicated to a matrix piezoelectric ultrasound transducer for 3D Trans-Esophageal Echocardiography (TEE). It consists of 9 low-noise amplifiers (LNAs), 9 time-gain-compensation (TGC) amplifiers and a 9:1 micro-beamformer. A prototype ASIC has been implemented in 0.35 μm CMOS technology, with a core area of 0.98 mm × 1.7 mm. It is operated at a 3.3 V supply and consumes only 0.5 mW per channel. The measured channel-to-channel mismatch is within ±1 dB. Acoustic measurements proved the micro-beamforming function of the ASIC when processing real ultrasound signals from a 3 × 3 transducer array. These promising results show that this design, after layout optimization, is suitable to be scaled up to accommodate a full matrix transducer.
Z. Yu;
PhD thesis, Delft University of Technology, 2012.
Zili Yu;
PhD thesis, Delft University of Technology, April 2012.
document
Z. Yu; M. A. P. Pertijs; G. C. M. Meijer;
Electronics Letters,
Volume 47, Issue 18, pp. 1011‒1012, September 2011. DOI: 10.1049/el.2011.1786
Abstract: ...
The proposed ultrasound beamformer is based on the delay-and-sum beamforming principle. The circuit consists of several programmable delay lines. Each delay line is constructed by pipeline-operated sample-and-hold (S/H) stages with digitally-assisted delay control, which ensure delay-independent gain and good timing accuracy. The summation is realised in the charge domain using the charge-averaging method, which consumes virtually no extra die area or power. A prototype beamformer has been fabricated in a 0.35 m CMOS process to interface nine transducer elements. Measurement results show that this circuit consumes much less power and chip area than the prior art, while maintaining good accuracy and flexibility.
Z. Yu;
In The Sense of Contact 13,
Sense of Contact 2009, pp. -, 2011.
Z. Yu; S. Blaak; G. C. M. Meijer; M. A. P. Pertijs; C. T. Lancée; J. G. Bosch; C. Prins; N. de Jong;
In Annual Sensor Technology Workshop Sense of Contact,
The Netherlands, April 2010. (Best Poster Award).
Z. Yu; M. A. P. Pertijs; G. C. M. Meijer;
In Proc. IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT),
IEEE, pp. 299‒301, November 2010. DOI: 10.1109/icsict.2010.5667749
J. Yao; Z. Yu; M. A. P. Pertijs; G. C. M. Meijer; C. T. Lancee; J. G. Bosch; N. de Jong;
In Proc. IEEE International Ultrasonics Symposium (IUS),
IEEE, pp. 841‒844, October 2010. DOI: 10.1109/ultsym.2010.5935775
Abstract: ...
In this paper, a programmable time-gain compensation amplifier dedicated to a 2D piezoelectric ultrasound transducer is presented. It uses an open-loop amplifier structure consisting of a voltage-to-current converter and a current-to-voltage converter. The circuit has been designed in a standard 0.35-μm CMOS process. Simulation and measurement results show that gains of 0dB, 12dB, 26dB and 40dB can be achieved for input signals centered at 6MHz with 80dB dynamic range (100μV to 1V). The measured gain errors at 6MHz are below 1dB for all gain settings. The amplifier consumes only 130μW when driving a 250fF load.
S. Blaak; Z. Yu; G.C.M. Meijer; C.T. Lancee; J.G. Bosch; N. de Jong;
In M Pappalardo (Ed.), Proceedings 2009 IEEE International Ultrasonics Symposium,
IEEE, pp. 1338-1341, 2009. NEO.
Z. Yu;
Delft University of Technology, , 2008.
Z. Yu;
Delft University of Technology, , 2008.
Z. Yu;
Delft University of Technology, , 2008.
Z. Yu;
Delft University of Technology, , 2008.
Z. Yu;
Delft University of Technology, , 2008.
Z. Yu; G.C.M. Meijer; C.A. Prins; N. de Jong; H. van den Bosch;
In s.n. (Ed.), Proceedings of sense of contact X,
Sense of Contact 2009, pp. 1-4, 2008.
Z. Yu; G.C.M. Meijer;
In s.n. (Ed.), Proceedings of ICSICT,
ICSIST, pp. 1-4, 2008.
Z. Yu; G.C.M. Meijer;
In s.n. (Ed.), Proceedings of Electronics-ET 2008,
Electronics 2008, pp. 19-22, 2008.
Z. Yu;
PhD thesis, Delft University of Technology, 2007.
Z. Yu;
PhD thesis, Delft University of Technology, 2007.
Y. Yu; S. Butselaar; K.A.A. Makinwa;
In s.n. (Ed.), Proceedings of ProRISC 2005, 16th Annual Workshop on Circuits, Systems and Signal Processing,
Dutch Technology Foundation, pp. 316-319, 2005. Editor onbekend, JH/STW.
X. Yu; J. Scherpen; A.J. van der Veen; P.M. Dewilde;
In Proc. CDC,
IEEE, pp. 2249-2254, December 1996.
document
Xiaode Yu;
PhD thesis, Delft Univ. of Technology, Delft, The Netherlands, May 1996.
document
M. Verhaegen; X. Yu;
Automatica,
Volume 31, Issue 2, pp. 201-216, 1995.
X. Yu; M. Verhaegen;
In Proc. European Control Conf.,
Groningen, The Netherlands, pp. 603-608, June 1993.
BibTeX support
Last updated: 26 Dec 2018
Zili Yu
Alumnus- Left in 2012